Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Generative recommendation (GR) is an emerging paradigm that tokenizes items into discrete tokens and learns to autoregressively generate the next tokens as predictions. While this token-generation paradigm is expected to surpass traditional transductive methods, potentially generating new items directly based on semantics, we empirically show that GR models predominantly generate items seen during training and struggle to recommend unseen items. In this paper, we propose SpecGR, a plug-and-play framework that enables GR models to recommend new items in an inductive setting. SpecGR uses a drafter model with inductive capability to propose candidate items, which may include both existing items and new items. The GR model then acts as a verifier, accepting or rejecting candidates while retaining its strong ranking capabilities. We further introduce the guided re-drafting technique to make the proposed candidates more aligned with the outputs of generative recommendation models, improving verification efficiency. We consider two variants for drafting: (1) using an auxiliary drafter model for better flexibility, or (2) leveraging the GR model’s own encoder for parameterefficient self-drafting. Extensive experiments on three realworld datasets demonstrate that SpecGR exhibits both strong inductive recommendation ability and the best overall performance among the compared methods.more » « lessFree, publicly-accessible full text available January 20, 2027
-
Jenkins, C; Taylor, M (Ed.)Generative recommendation (GR) is an emerging paradigm that tokenizes items into discrete tokens and learns to autoregressively generate the next tokens as predictions. While this token-generation paradigm is expected to surpass traditional transductive methods, potentially generating new items directly based on semantics, we empirically show that GR models predominantly generate items seen during training and struggle to recommend unseen items. In this paper, we propose SpecGR, a plug-and-play framework that enables GR models to recommend new items in an inductive setting. SpecGR uses a drafter model with inductive capability to propose candidate items, which may include both existing items and new items. The GR model then acts as a verifier, accepting or rejecting candidates while retaining its strong ranking capabilities. We further introduce the guided re-drafting technique to make the proposed candidates more aligned with the outputs of generative recommendation models, improving verification efficiency. We consider two variants for drafting: (1) using an auxiliary drafter model for better flexibility, or (2) leveraging the GR model’s own encoder for parameterefficient self-drafting. Extensive experiments on three realworld datasets demonstrate that SpecGR exhibits both strong inductive recommendation ability and the best overall performance among the compared methods.more » « lessFree, publicly-accessible full text available January 20, 2027
-
Thematic Analysis (TA) is a fundamental method in healthcare research for analyzing transcript data, but it is resource-intensive and difficult to scale for large, complex datasets. This study investigates the potential of large language models (LLMs) to augment the inductive TA process in high-stakes healthcare settings. Focusing on interview transcripts from parents of children with Anomalous Aortic Origin of a Coronary Artery (AAOCA), a rare congenital heart disease, we propose an LLM-Enhanced Thematic Analysis (LLM-TA) pipeline. Our pipeline integrates an affordable state-of-the-art LLM (GPT-4o mini), LangChain, and prompt engineering with chunking techniques to analyze nine detailed transcripts following the inductive TA framework. We evaluate the LLM-generated themes against human-generated results using thematic similarity metrics, LLM-assisted assessments, and expert reviews. Results demonstrate that our pipeline outperforms existing LLM-assisted TA methods significantly. While the pipeline alone has not yet reached human-level quality in inductive TA, it shows great potential to improve scalability, efficiency, and accuracy while reducing analyst workload when working collaboratively with domain experts. We provide practical recommendations for incorporating LLMs into high-stakes TA workflows and emphasize the importance of close collaboration with domain experts to address challenges related to real-world applicability and dataset complexity.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations-where LLMs direct the discourse and steer the conversation's objectives-remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.more » « lessFree, publicly-accessible full text available February 10, 2026
-
Accurate diagnosis and prognosis assisted by pathology images are essential for cancer treatment selection and planning. Despite the recent trend of adopting deep-learning approaches for analyzing complex pathology images, they fall short as they often overlook the domain-expert understanding of tissue structure and cell composition. In this work, we focus on a challenging Open-ended Pathology VQA (PathVQA-Open) task and propose a novel framework named Path-RAG, which leverages HistoCartography to retrieve relevant domain knowledge from pathology images and significantly improves performance on PathVQA-Open. Admitting the complexity of pathology image analysis, Path-RAG adopts a human-centered AI approach by retrieving domain knowledge using HistoCartography to select the relevant patches from pathology images. Our experiments suggest that domain guidance can significantly boost the accuracy of LLaVA-Med from 38% to 47%, with a notable gain of 28% for H&E-stained pathology images in the PathVQA-Open dataset. For longer-form question and answer pairs, our model consistently achieves significant improvements of 32.5% in ARCH-Open PubMed and 30.6% in ARCH-Open Books on H\&E images.more » « less
-
Domain experts play an important role in data science, as their knowledge can unlock valuable insights from data. As they often lack technical skills required to analyze data, they need collaborations with technical experts. In these joint efforts, productive collaborations are critical not only in the phase of constructing a data science task, but more importantly, during the execution of a task. This need stems from the inherent complexity of data science, which often involves user-defined functions or machine-learning operations. Consequently, collaborators want various interactions during runtime, such as pausing/resuming the execution, inspecting an operator's state, and modifying an operator's logic. To achieve the goal, in the past few years we have been developing an open-source system called Texera to support collaborative data analytics using GUI-based workflows as cloud services. In this paper, we present a holistic view of several important design principles we followed in the design and implementation of the system. We focus on different methods of sending messages to running workers, how these methods are adopted to support various runtime interactions from users, and their trade-offs on both performance and consistency. These principles enable Texera to provide powerful user interactions during a workflow execution to facilitate efficient collaborations in data analytics.more » « less
-
Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations—where LLMs direct the discourse and steer the conversation’s objectives—remains largely untapped. In this study, we provide an exploration of the LLM-guided conversation paradigm. Specifically, we first characterize LLM-guided conversation into three fundamental properties: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GUIDELLM as a general framework for LLM-guided conversation. We then implement an autobiography interviewing environment as one of the demonstrations of GuideLLM, which is a common practice in Reminiscence Therapy. In this environment, various techniques are integrated with GUIDELLM to enhance the autonomy of LLMs, such as Verbalized Interview Protocol (VIP) and Memory Graph Extrapolation (MGE) for goal navigation, and therapy strategies for empathetic engagement. We compare GUIDELLM with baseline LLMs, such as GPT-4-turbo and GPT-4o, from the perspective of interviewing quality, conversation quality, and autobiography generation quality. Experimental results encompassing both LLM-as-a-judge evaluations and human subject experiments involving 45 participants indicate that GUIDELLM significantly outperforms baseline LLMs in the autobiography interviewing task.more » « less
An official website of the United States government

Full Text Available